

FLUTTER LIBRARIES WE LOVE

80+ must‑have Flutter libraries to speed up your work

by Souvik Biswas & Codemagic

Copyright © 2021 by Codemagic

All rights reserved. This publication text may not be uploaded or posted online without the prior
written permission of the publisher. For permission requests, write to the publisher, addressed

“Ebook permissions request”: liina@nevercode.io

Designed by Kätrin Sibul

Want to use a
Flutter or Dart library
in your application?

Check which package versions are
compatible with your Flutter version

SEARCH PACKAGE

We build the 1,000 most popular packages on pub.dev against multiple Flutter
channels and versions to test their compatibility so you don’t have to.

http://pub.green

Editorial note 2

Introduction 3

STATE MANAGEMENT 4

Flutter BLoC 5

List of state management libraries 12

NETWORKING 13

Dio 14

List of networking libraries 17

TEXT AND FONTS 18

Animated Text Kit 19

List of text and fonts libraries 23

UX/UI 24

VelocityX 25

List of UX/UI libraries 29

LOCATION AND CONNECTIVITY 30

Geolocator 31

List of location 36
and connectivity libraries

IMAGES AND VIDEOS 37

Cached network image 38

List of image and video libraries 41

DATA PERSISTENCE AND 42
FILE SYSTEM

Hive 43

List of data persistence and 50
file system libraries

ANIMATIONS AND TRANSITIONS 51

Liquid Swipe 52

List of animation 55
and transition libraries

UTILITY 56

Easy Localization 57

List of utility libraries 61

CODE GENERATOR AND 62
BUILD TOOLS

Json Serializable 63

List of code generator and 67
build tool libraries

TESTING 68

Mockito 69

List of testing libraries 73

Conclusion 74

About the Author 75

About Codemagic 76

Table of contents

2codemagic.io

FLUTTER LIBRARIES WE LOVE

Editorial note

It all started with a tweet, like so many things nowadays. Marie Jaksman, the CMO

of Codemagic, tweeted a question in March to find out which Flutter Libraries are

absolutely necessary for developers.

We got so many great ideas from the answers that it was impossible to squeeze all

those libraries into one article. Instead, we decided to create our first-ever ebook.

The idea was to cover a wide range of categories and to showcase different

libraries – some that are less known gems but also some that are already quite popular

and have the Flutter Favorite label on them.

Unfortunately, we couldn’t cover all the libraries from the tweets we got but we

tried to find a great balance between famous libraries and hidden treasures.

This book is not a beginners book, although feel free to take a look if you are one.

You won’t find all “must have” libraries here but you might find an interesting

selection of something unique. We tried to pick libraries that might not be popular yet

but have both great potential and our wholehearted support. In addition to that, there

are also some libraries that we just had to mention because the Flutter community

simply loves them.

http://codemagic.io

3codemagic.io

FLUTTER LIBRARIES WE LOVE

Introduction

When talking to developers, one question always comes up – what tools should we

use? Flutter is relatively new but the selection of Flutter libraries is growing fast.

We focused on 11 different Flutter library categories. After selecting the categories,

we made a list of libraries under each category and chose the libraries we wanted to

highlight the most.

You will find 11 different Flutter library categories:

1. State management

2. Networking

3. Text and fonts

4. UX/UI

5. Location and connectivity

6. Images and videos

7. Data persistence and file system

8. Animations and transitions

9. Utility

10. Code generator and build tools

11. Testing

Each category has a list of Flutter libraries as well as a highlighted library that we

dig deeper into.

In addition to an overall description, all highlighted libraries consist of pros and

cons, developer’s perspective and real‑life code examples.

http://codemagic.io

4codemagic.io

FLUTTER LIBRARIES WE LOVE State Management

STATE MANAGEMENT

State management is a crucial aspect when working on a large scale

production app. That said, every state management solution is

unique and is fit for a certain architecture of the app.

Let’s take a look at one of the state management libraries that

does a great job of separating the business logic

from the UI – Flutter BLoC.

1/11

http://codemagic.io

5codemagic.io

FLUTTER LIBRARIES WE LOVE State Management

Flutter BLoC

Helps implement BLoC pattern

by Felix Angelov

Flutter BLoC is a predictable state management library that helps to implement the

Business Logic Component (BLoC) design pattern. It uses reactive programming to

handle the flow of data within an app.

“I made the BLoC library to help developers manage their

application state in a predictable, testable, and scalable

way. The best thing about it is the awesome community

behind it. I will continue developing it and there will be

exciting updates in the near future.”

Felix Angelov, the creator of Flutter BLoC

http://codemagic.io
https://pub.dev/publishers/bloclibrary.dev
https://www.didierboelens.com/2018/08/reactive-programming-streams-bloc
https://twitter.com/felangelov

6codemagic.io

FLUTTER LIBRARIES WE LOVE State Management

Why BLoC?
BLoC helps to encapsulate the business logic from the UI. Events are fed in as the

input to the logic component and states are generated as the output. It relies heavily

on Streams and is often used in conjunction with the Provider for exposing the BLoC

to the UI. Testing BLoC is really easy using the library bloc_test.

Developer’s perspective
There are a lot of options while choosing a state management library for Flutter, and

every app’s structure is unique. So, there is no state management library best for every

use case. BLoC is really nice if you are working on a large-scale production app, but

due to the amount of boilerplate code, it might not be suitable for smaller apps.

Pros and cons

Example
An app for fetching applications using Codemagic API is implemented using the BLoC

pattern.

The FetchApplication event will be added to the BLoC to fetch the applications

from the server. It will mostly be used right after the initial state when there are no

applications fetched yet.

+ Easy to separate UI and business logic

+ Good tooling support for

 VS Code and IntelliJ

+ Easy to test

+ Nice documentation

‑ Creates a lot of boilerplate code

‑ Not suitable for simple apps

http://codemagic.io
https://pub.dev/packages/bloc_test

7codemagic.io

FLUTTER LIBRARIES WE LOVE State Management

ApplicationState will define all possible states while fetching the applications from

the server.

• ApplicationEmpty: initial state when there is no data present

• ApplicationLoading: while fetching applications

• ApplicationLoaded: successfully fetched an application

• ApplicationError: unable to fetch the application

// BLoC Event

abstract class ApplicationEvent extends Equatable {

 const ApplicationEvent();

}

class FetchApplication extends ApplicationEvent {

 const FetchApplication();

 @override

 List<Object> get props => [];

}

// BLoC State

abstract class ApplicationState extends Equatable {

 ApplicationState();

 @override

 List<Object> get props => [];

}

class ApplicationEmpty extends ApplicationState {}

class ApplicationLoading extends ApplicationState {}

http://codemagic.io

8codemagic.io

FLUTTER LIBRARIES WE LOVE State Management

The ApplicationBloc is responsible for receiving the ApplicationEvents and

converting them into ApplicationStates.

class ApplicationLoaded extends ApplicationState {

 final Application application;

 ApplicationLoaded({required this.application});

 @override

 List<Object> get props => [application];

}

class ApplicationError extends ApplicationState {}

// BLoC

class ApplicationBloc extends Bloc<ApplicationEvent,

ApplicationState> {

 final ApplicationRepository applicationRepository;

 ApplicationBloc({required this.applicationRepository})

 : super(ApplicationEmpty());

 @override

 Stream<ApplicationState> mapEventToState(ApplicationEvent

event) async* {

 if (event is FetchApplication) {

 yield ApplicationLoading();

 try {

 final Application? application =

 await (applicationRepository.fetchApplication());

 if (application != null) {

http://codemagic.io

9codemagic.io

FLUTTER LIBRARIES WE LOVE State Management

BlocProvider is used to create an instance of ApplicationBloc and manage it.

BlocBuilder is used to build the UI based upon the state returned by the Application-

Bloc. When the state is ApplicationEmpty, the FetchApplication event is added to the

ApplicationBloc.

 yield ApplicationLoaded(application: application);

 }

 } catch (_) {

 ApplicationError();

 }

 }

 }

}

class ApplicationPage extends StatelessWidget {

 final ApplicationRepository repository;

 ApplicationPage({required this.repository});

 @override

 Widget build(BuildContext context) {

 return BlocProvider(

 create: (context) =>

ApplicationBloc(applicationRepository: repository),

 child: ApplicationView(),

);

 }

}

class ApplicationView extends StatelessWidget {

 final TextStyle _style = TextStyle(fontSize: 18);

 @override

 Widget build(BuildContext context) {

 return BlocBuilder<ApplicationBloc, ApplicationState>(

http://codemagic.io

10codemagic.io

FLUTTER LIBRARIES WE LOVE State Management

 builder: (context, state) {

 if (state is ApplicationEmpty) {

 BlocProvider.of<ApplicationBloc>(context).

add(FetchApplication());

 }

 if (state is ApplicationError) {

 return Center(

 child: Text(‘Failed to load app info’),

);

 }

 if (state is ApplicationLoaded) {

 return Center(

 child: Column(

 mainAxisAlignment: MainAxisAlignment.center,

 crossAxisAlignment: CrossAxisAlignment.start,

 children: <Widget>[

 Text(‘App ID: ${state.application.id}’, style:

_style),

 Text(‘App Name: ${state.application.appName}’,

style: _style),

 Text(‘Last Build Id: ${state.application.

lastBuildId}’,

 style: _style),

],

),

);

 }

 return Center(

 child: CircularProgressIndicator(),

);

 },

);

 }

}

http://codemagic.io

11codemagic.io

FLUTTER LIBRARIES WE LOVE State Management

Reference links
Package

Documentation

Sample app

http://codemagic.io
https://pub.dev/packages/flutter_bloc
https://bloclibrary.dev
http://github.com/sbis04/top_flutter_libraries/tree/master/codemagic_bloc

12codemagic.io

FLUTTER LIBRARIES WE LOVE State Management

List of state management libraries

Here are some libraries for managing the state of your Flutter app:

• flutter_mobx: Flutter integration for MobX. It provides a set of Observer widgets

that automatically rebuild when the tracked observables change.

• flutter_redux: set of utilities that allow you to easily consume a Redux Store to

build Flutter widgets.

• provider: Flutter plugin that acts as a wrapper around the InheritedWidget to make

them easier to use and more reusable.

• flutter_modular: Flutter plugin that helps to deal with problems like dependency

injection and route management.

• get_it: simple direct Service Locator that allows decoupling the interface from a

concrete implementation and accessing it from anywhere in the app.

• binder: A lightweight, yet powerful Flutter library to bind your application state

with your business logic.

• get (GetX): A Flutter package for simplified reactive state management solution.

• flutter_riverpod: Flutter state management library to simplify accessing state

while being robust and testable.

http://codemagic.io
https://pub.dev/packages/flutter_mobx
https://pub.dev/packages/mobx
https://pub.dev/packages/flutter_redux
https://pub.dev/packages/redux
https://pub.dev/packages/provider
https://pub.dev/packages/flutter_modular
https://pub.dev/packages/get_it
https://pub.dev/packages/binder
https://pub.dev/packages/get
https://pub.dev/packages/flutter_riverpod

13codemagic.io

FLUTTER LIBRARIES WE LOVE State Management

NETWORKING

Fetching data from the internet is necessary for most apps. Stated

below are some Flutter libraries that will help you to make network

requests and handle the responses gracefully in your app.

2/11

http://codemagic.io

14codemagic.io

FLUTTER LIBRARIES WE LOVE Networking

Dio

A powerful HTTP client for Dart

by Flutter China

Dio is a Flutter networking library for handling HTTP requests with ease. It

supports interceptors, global configuration, FormData, request cancellation, file

downloading, timeout, etc.

“Dio is a powerful tool for API calls and much more. With

customer interceptors with Dio, I have super powers!”

Temi Ajiboye, mobile app developer

http://codemagic.io
https://pub.dev/publishers/flutterchina.club
https://twitter.com/olu_tayormi

15codemagic.io

FLUTTER LIBRARIES WE LOVE Networking

Why Dio?
Dio is a quite helpful library for anyone working with APIs in their application. It helps

with making API calls and provides good control over them. With Dio, you can easily

manage uploading and downloading of multiple files. Using Dio Interceptor allows

you to intercept and lock/unlock requests for performing some operations in between

an API request.

Developer’s perspective
There is a similar library for handling HTTP requests in Dart, known as http. But it is

quite verbose and does not allow much control over the HTTP calls. Interceptor is a

vital part of Dio that is useful in different scenarios, for example if you want to auto‑

matically retry a request when the internet connection is restored. You can even track

the download progress of large files easily using Dio.

Pros
+ Make API calls over HTTP

+ Track download/upload progress

+ Ability to intercept requests

Example

/// Declare a variable

late Dio _dio;

// Initialize Dio

BaseOptions options = new BaseOptions(

 baseUrl: ‘https://api.codemagic.io’,

 connectTimeout: 5000,

 receiveTimeout: 3000,

 headers: {

http://codemagic.io
https://pub.dev/packages/http

16codemagic.io

FLUTTER LIBRARIES WE LOVE Networking

Reference links
Package

Documentation

Sample app

 “Content-Type”: “application/json”,

 “x-auth-token”: _token,

 });

_dio = new Dio(options);

// POST Data

Response response = await _dio.post(

 “/builds”,

 data: {

 “appId”: _appId,

 “workflowId”: _workflowId,

 “branch”: _branch,

 },

);

if (response.statusCode == 200) {

 print(response.data);

}

// GET Data

Response response = await _dio.get(

 “/builds/$_buildId”,

);

if (response.statusCode == 200) {

 print(response.data);

}

http://codemagic.io
https://pub.dev/packages/dio
https://pub.dev/documentation/dio
http://github.com/sbis04/top_flutter_libraries/tree/master/dio_demo

17codemagic.io

FLUTTER LIBRARIES WE LOVE Networking

List of networking libraries

• http: Flutter plugin supporting composable, multi-platform, Future-based API for

HTTP requests.

• url_launcher: Flutter plugin for launching a URL in the mobile platform. It has

support for web, phone, SMS, and email schemes.

• firebase_auth: Flutter plugin for Firebase Auth, enabling authentication

using passwords, phone numbers and identity providers like Google, Facebook

and Twitter.

• firebase_messaging: Flutter plugin for Firebase Cloud Messaging, a cross‑

platform messaging solution that lets you reliably deliver messages.

• google_sign_in: Flutter plugin for Google Sign‑In, a secure authentication

system for signing in with a Google account.

• sign_in_with_apple: Flutter bridge to initiate Sign in with Apple (on iOS, macOS,

and Android). Includes support for keychain entries as well as signing in with an

Apple ID.

http://codemagic.io
https://pub.dev/packages/http
https://pub.dev/packages/url_launcher
https://pub.dev/packages/firebase_auth
https://pub.dev/packages/firebase_messaging
https://pub.dev/packages/google_sign_in
https://pub.dev/packages/sign_in_with_apple

18codemagic.io

FLUTTER LIBRARIES WE LOVE Text and Fonts

TEXT AND FONTS

Typography is a vital aspect of every popular mobile application. It

makes your app more attractive and consistent throughout different

screen sizes. Let’s take a look at some of the Flutter libraries for

improving the text and font of your app.

A Flutter library that adds astonishing animations to any app text is

worthy of being highlighted.

3/11

http://codemagic.io

19codemagic.io

FLUTTER LIBRARIES WE LOVE Text and Fonts

Animated Text Kit

Create cool and beautiful text animations

by Ayush Agarwal

Animated Text Kit provides you with easy implementation of beautiful and nice text

animations to your Flutter app. It contains 7 types of text animations, including

Rotate, Fade, Typer, Typewriter, Scale, Colorize and TextLiquidFill.

“I started working on this package after Jeremiah and I

released the Flutter Spinkit package. I was working on some

Flutter and needed an animated text for the UI, but couldn’t

find any suitable packages or even blogs about this. So I

decided to create a Flutter package myself. I am very glad that

it became so popular among other Flutter developers.”

Ayush Agarwal, creator of Animated Text Kit

http://codemagic.io
https://pub.dev/publishers/ayushagarwal.ml
https://twitter.com/aagarwal1012

20codemagic.io

FLUTTER LIBRARIES WE LOVE Text and Fonts

Why Animated Text Kit?
With Animated Text Kit, you can prevent the boilerplate code required to achieve these

text animations. There are several customization options, so building your unique

design won’t be a challenge with this package. You can apply the animations to either a

single String or a List of Strings.

Developer’s perspective
Animated Text Kit is an impressive text animation package that lets you add

subtle but eye‑catching texts to your app. This package comes with several types

of text animations, but the most distinguishable among these is the TextLiquidFill,

which adds a liquid filling-like text animation.

Pros
+ Easy implementation

+ Large number of customization options

+ Support for any TextStyle

Example

class LiquidTextView extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return SafeArea(

 child: Column(

 mainAxisAlignment: MainAxisAlignment.start,

 children: <Widget>[

 SizedBox(height: 50),

 Text(

 ‘TextLiquidFill’,

 style: TextStyle(

 fontSize: 30.0,

http://codemagic.io

21codemagic.io

FLUTTER LIBRARIES WE LOVE Text and Fonts

 fontWeight: FontWeight.bold,

),

),

 SizedBox(height: 200),

 TextLiquidFill(

 text: ‘CODE’,

 waveColor: Colors.blueAccent.shade700,

 boxBackgroundColor: Colors.orange.shade600,

 textStyle: style,

 waveDuration: Duration(seconds: 4),

 boxHeight: 120,

 boxWidth: 300,

),

 TextLiquidFill(

 text: ‘MAGIC’,

 waveColor: Colors.blueAccent.shade700,

 boxBackgroundColor: Colors.orange.shade600,

 textStyle: style,

 waveDuration: Duration(seconds: 2),

 boxHeight: 120,

 boxWidth: 300,

),

],

),

);

 }

}

http://codemagic.io

22codemagic.io

FLUTTER LIBRARIES WE LOVE Text and Fonts

Reference links
Package

Documentation

Wavy Liquid Animation for Text

Sample app

http://codemagic.io
https://pub.dev/packages/animated_text_kit
http://pub.dev/documentation/animated_text_kit/latest/
https://medium.com/mobile-development-group/flutter-wavy-liquid-animation-for-text-c3cad4f2a8bd
https://github.com/sbis04/top_flutter_libraries/tree/master/animated_text_demo

23codemagic.io

FLUTTER LIBRARIES WE LOVE Text and Fonts

List of text and fonts libraries

• google_fonts: Flutter package for accessing the Google Fonts API, allowing you to

easily use any of the 977 fonts from fonts.google.com.

• auto_size_text: Flutter widget that automatically resizes text to fit perfectly

within its bounds.

• enough_ascii_art: generates ASCII art using image to ASCII, FIGlet text banner

support and emoticon to text conversions.

• font_awesome_flutter: The Font Awesome Icon pack available as Flutter Icons.

Provides 1500 additional icons to use in your apps.

• flutter_screenutil: Flutter plugin for adapting the screen and font size.

• flutter_markdown: A markdown renderer for Flutter. It supports the original

format, but no inline HTML.

• pdf: A PDF producer for Dart. It can create PDF files on all platforms.

http://codemagic.io
https://pub.dev/packages/google_fonts
http:// fonts.google.com
https://pub.dev/packages/auto_size_text
https://pub.dev/packages/enough_ascii_art
https://pub.dev/packages/font_awesome_flutter
https://pub.dev/packages/flutter_screenutil
https://pub.dev/packages/flutter_markdown
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://pub.dev/packages/pdf

24codemagic.io

FLUTTER LIBRARIES WE LOVE UX/UI

UX/UI

Getting User Interface and User Experience right is a crucial thing

in modern applications. Flutter is known as Google’s UI toolkit for

creating beautiful and natively compiled apps.

To further improve your app design, let’s take a look at some UI

libraries that caught our attention.

The most unique UI library that we want to highlight is VelocityX.

4/11

http://codemagic.io

25codemagic.io

FLUTTER LIBRARIES WE LOVE UX/UI

VelocityX

A minimalist UI framework for Flutter

by Pawan Kumar

VelocityX gives you access to all the building blocks you need to create beautiful and

responsive UI designs. This package uses Tailwind CSS‑like property naming and

SwiftUI style declarative syntax to facilitate rapid development.

“VelocityX is a minimalist Flutter framework inspired

by Tailwind CSS and SwiftUI for building custom designs

fast. We decided to make it because most frameworks/

libraries do too much. They come with all sorts of pre‑

designed components, like buttons, cards, and alerts, that

might help you move quickly at first, but cause more pain

than gain when it’s time to make your app stand out with a

custom design.”

Pawan Kumar, creator of VelocityX

http://codemagic.io
https://pub.dev/publishers/mtechviral.com
https://twitter.com/imthepk

26codemagic.io

FLUTTER LIBRARIES WE LOVE UX/UI

Why VelocityX?
VelocityX can make developers more productive because of its declaration style. It

uses extension methods to form a chain of properties, rather than using the nested

style, which is default in Flutter.

Developer’s perspective
Though this package can make you more productive, this property chaining style can

be quite intimidating for the beginners.

The best thing about this package is that it makes every widget responsive, which is

great if you are building Flutter apps for Web or Desktop.

This makes VelocityX quite popular among everyone who wants to create

Flutter apps that are mainly focused on the web and desktop platform. But those who

are mostly focused on mobile cross‑platform support might prefer the nested style of

Flutter. Also, using this package compromises the readability of the code.

Pros and cons

Example

- Loses Flutter’s unique declaration

 style (VelocityX uses widgets)

‑ Precise control over styling is not

 always possible

‑ Reduces readability of the code

+ Increased productivity

+ Highly responsive UI

+ Declarative syntax similar to SwiftUI

class VelocityDemo extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return Scaffold(

 body: SafeArea(

 child: VxBox(

 child: Column(

http://codemagic.io

27codemagic.io

FLUTTER LIBRARIES WE LOVE UX/UI

 mainAxisAlignment: MainAxisAlignment.start,

 children: <Widget>[

 ‘VelocityX’

 .text.orange500.semiBold.size(40).make()

 .p16(),

 VxZeroList(

 length: 3,

 isDark: true,

 isBottomLinesActive: false,

),

 [

 “Velocity 1”

 .text.white.uppercase.size(20).make()

 .box.rounded.alignCenter.purple600.make()

 .p4(),

 “Velocity 2”

 .text.white.uppercase.size(20).make()

 .box.rounded.alignCenter.green500.make()

 .p4(),

 “Velocity 3”

 .text.white.uppercase.size(20).make()

 .box.rounded.alignCenter.orange500.make()

 .p4(),

].swiper(enlargeCenterPage: true).py12(),

 ‘Codemagic’.text.uppercase.red600.bold

 .letterSpacing(8).size(40).make()

 .p16(),

],

),

).make(),

),

);

 }

}

http://codemagic.io

28codemagic.io

FLUTTER LIBRARIES WE LOVE UX/UI

Reference links
Package

Documentation

VelocityX Tutorials on MTECHVIRAL

Sample app

http://codemagic.io
https://pub.dev/packages/velocity_x
https://velocityx.dev
https://www.youtube.com/playlist?list=PLR2qQy0Zxs_UHLXSYbK50jEapx0ORmLYv
https://www.youtube.com/channel/UCFTM1FGjZSkoSPDZgtbp7hA
https://github.com/sbis04/top_flutter_libraries/tree/master/velocity_demo

29codemagic.io

FLUTTER LIBRARIES WE LOVE UX/UI

List of UX/UI libraries

• fl_chart: powerful Flutter chart library, currently supporting Line Chart, Bar Chart,

Pie Chart and Scatter Chart.

• giffy_dialog: beautiful and custom alert dialog for Flutter.

• emoji_picker: Flutter package that provides an Emoji Keyboard widget with 390

emojis in 8 categories.

• flutter_webview_plugin: plugin that allows Flutter to communicate with a native

Webview.

• fluttertoast: Flutter library for creating toast messages in a single line of code.

• share: Flutter plugin to share content from your Flutter app via the platform’s

share dialog.

• showcaseview: Flutter package to showcase/highlight widgets step by step.

• pull_to_refresh: A widget for Flutter scroll component drop-down refresh and

pull up load functionality.

http://codemagic.io
https://pub.dev/packages/fl_chart
https://pub.dev/packages/giffy_dialog
https://pub.dev/packages/emoji_picker
https://pub.dev/packages/flutter_webview_plugin
https://pub.dev/packages/fluttertoast
https://pub.dev/packages/share
https://pub.dev/packages/showcaseview
https://pub.dev/packages/pull_to_refresh

30codemagic.io

FLUTTER LIBRARIES WE LOVE Location and connectivity

LOCATION AND
CONNECTIVITY

If you are working with an app that requires you to

access some platform-specific services like device location, Bluetooth,

WiFi, etc., then you may want a helpful plugin to achieve that. If you

are dealing with any of the above, there are some Flutter libraries

that may come in handy.

Let us introduce you to a Flutter plugin that allows you to work with

locations and gives you easy access to geocoding.

5/11

http://codemagic.io

31codemagic.io

FLUTTER LIBRARIES WE LOVE Location and connectivity

Geolocator

API for generic location services

by Baseflow

Flutter Geolocator plugin provides easy access to the platform-specific location

services. It uses FusedLocationProviderClient as default. If this is not available, it uses

the LocationManager on Android and CLLocationManager on iOS.

“Geolocator is developed by Baseflow. This alone is proof of

quality, but in addition to that, it is also one of the plugins

that is chosen as a Flutter Favorite — and for good rea‑

sons. Too often plugins are small frameworks themselves,

requiring the user to learn how to use them. This isn’t the

case with Geolocator, it does one thing, the name is self‑

explanatory, and it does everything right, with no hassle for

the developer.”

Francesco Lapicca, Flutter developer

http://codemagic.io
https://pub.dev/publishers/baseflow.com
https://developers.google.com/android/reference/com/google/android/gms/location/FusedLocationProviderClient
https://developer.android.com/reference/android/location/LocationManager
https://developer.apple.com/documentation/corelocation/cllocationmanager
https://twitter.com/yakforward

32codemagic.io

FLUTTER LIBRARIES WE LOVE Location and connectivity

Why Geolocator?
Geolocator helps to retrieve the current location of the device comfortably on both

the Android and iOS platforms. You can even generate an approximate address based

on the coordinates of that location or vice versa. It also allows for fetching the last

known location of the device. In addition, this plugin provides an excellent method for

determining the distance between two coordinates.

Developer’s perspective
Geolocator is an essential library for people dealing with GPS or Maps in their app.

This plugin is a perfect fit for the google_maps_flutter library, as it often accepts the

location of a place in the form of coordinates. Being a quite popular and useful library,

it is holding a position in the Flutter Favorite package list.

Pros
+ Location addresses can be easily retrieved from the coordinates

+ Background location access is available

+ Distance between two locations can be measured with ease

+ Addresses can be formatted to the specified locale

Example

class GeolocationView extends StatefulWidget {

 @override

 _GeolocationViewState createState() => _

GeolocationViewState();

}

class _GeolocationViewState extends State<GeolocationView> {

 TextStyle _style = TextStyle(fontSize: 20);

 Position? _currentPosition;

http://codemagic.io
https://pub.dev/packages/google_maps_flutter
https://flutter.dev/docs/development/packages-and-plugins/favorites

33codemagic.io

FLUTTER LIBRARIES WE LOVE Location and connectivity

 // Method for retrieving the current location

 _getCurrentLocation() {

 Geolocator.getCurrentPosition(

 desiredAccuracy: LocationAccuracy.best

).then((Position position) {

 setState(() {

 _currentPosition = position;

 });

 // _getAddress();

 }).catchError((e) {

 print(e);

 });

 }

 @override

 Widget build(BuildContext context) {

 return Column(

 mainAxisAlignment: MainAxisAlignment.center,

 children: <Widget>[

 _currentPosition != null

 ? Column(

 crossAxisAlignment: CrossAxisAlignment.start,

 children: <Widget>[

 Text(

 ‘Latitude: ${_currentPosition?.latitude}’,

 style: _style,

),

 Text(

 ‘Longitude: ${_currentPosition?.

longitude}’,

 style: _style,

)

],

)

 : Container(),

 Padding(

http://codemagic.io

34codemagic.io

FLUTTER LIBRARIES WE LOVE Location and connectivity

 padding: const EdgeInsets.only(top: 15.0),

 child: ElevatedButton(

 onPressed: _getCurrentLocation,

 child: Text(‘GET LOCATION’, style: _style),

),

)

],

);

 }

}

http://codemagic.io

35codemagic.io

FLUTTER LIBRARIES WE LOVE Location and connectivity

Reference links
Package

Documentation

Sample app

http://codemagic.io
https://pub.dev/packages/geolocator
https://pub.dev/documentation/geolocator
https://github.com/sbis04/top_flutter_libraries/tree/master/geolocation_demo

36codemagic.io

FLUTTER LIBRARIES WE LOVE Location and connectivity

List of location and
connectivity libraries

• google_maps_flutter: Flutter plugin that provides a Google Maps widget.

• flutter_polyline_points: Flutter plugin that decodes a Polyline string into a list of

geo‑coordinates suitable for showing routes on Maps.

• connectivity: Flutter plugin for discovering the state of the network (WiFi and

cellular) connectivity.

• flutter_blue: Flutter plugin for connecting and communicating with Bluetooth

Low Energy devices.

http://codemagic.io
https://pub.dev/packages/google_maps_flutter
https://pub.dev/packages/flutter_polyline_points
https://pub.dev/packages/connectivity
https://pub.dev/packages/flutter_blue

37codemagic.io

FLUTTER LIBRARIES WE LOVE Images and videos

IMAGES AND VIDEOS

One of the most fundamental features for most of the applications

are image and video support. Some of the libraries that may help you

to integrate images and videos to your Flutter app are listed below.

We want to especially highlight an excellent image library that loads

images from a given network URL and caches it.

6/11

http://codemagic.io

38codemagic.io

FLUTTER LIBRARIES WE LOVE Images and videos

Cached network image

Download, cache and show images in Flutter

by Baseflow

Cached network image helps to load images from a given network URL and

caches them by storing all data in the temporary directory of the app. It uses sqflite for

storing the image file information, which is later used for retrieving the image from

the cache directory if present.

“Caching and not downloading the same thing again is

one of the most important responsibilities of a mobile app

developer for both the client side and server side. cached_

network_image does this without any additional code.

It is also quite customizable and it has a separate image

provider, so we can use it completely separately from the

widget. Can’t even think of developing an app without it.”

Serdar Coskun, Sr. Mobile app developer

http://codemagic.io
https://pub.dev/publishers/baseflow.com
https://twitter.com/serdarcsk

39codemagic.io

FLUTTER LIBRARIES WE LOVE Images and videos

Why cached network image?
Cached network image simplifies the caching process of any image that is to be

fetched from the network. You can use it to show any widget while the image is being

retrieved. If any error occurs during the retrieval process, it provides a nice property

to handle that case as well.

Developer’s perspective
This library is very useful for everyone working with network images in their app.

Most of the well‑known apps use this kind of feature to prevent the annoying loading

screen from being popped up every time by caching commonly used images in the

local storage.

Pros and cons

Example

+ Helps to avoid the loading screen

+ In‑built property for showing a place‑

holder widget

+ Handles error cases gracefully

‑ Takes up local storage space

‑ Have minimal support for web

class CachedImageView extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return GridView.builder(

 itemCount: 500,

 gridDelegate:

 const SliverGridDelegateWithFixedCrossAxisCount(

 crossAxisCount: 3,

),

 itemBuilder: (BuildContext context, int index) =>

http://codemagic.io

40codemagic.io

FLUTTER LIBRARIES WE LOVE Images and videos

Reference links
Package

Documentation

Sample app

 CachedNetworkImage(

 imageUrl: ‘https://loremflickr.com/100/100/

music?lock=$index’,

 placeholder: (context, url) => Center(

 child: CircularProgressIndicator(),

),

 errorWidget: (context, url, image) => Center(

 child: Icon(Icons.error),

),

),

);

 }

}

http://codemagic.io
https://pub.dev/packages/cached_network_image
https://pub.dev/documentation/cached_network_image
https://github.com/sbis04/top_flutter_libraries/tree/master/net_img_demo

41codemagic.io

FLUTTER LIBRARIES WE LOVE Images and videos

List of image and video libraries

• flutter_svg: SVG rendering and widget library for Flutter that allows painting and

displaying Scalable Vector Graphics 1.1 files.

• image_cropper: Flutter plugin for Android and iOS that supports cropping images.

• before_after: Flutter package that makes it easier to display the difference

between two images.

• image_picker: Flutter plugin for iOS and Android for picking images from the

image library and taking new pictures with the camera.

• flutter_blurhash: Flutter package for compact representation of a placeholder for

an image.

• video_player: Flutter plugin for iOS, Android and Web for playing back video on a

widget surface.

• video_trimmer: Flutter package for trimming videos. This supports retrieving,

trimming, and storage of trimmed video files to the file system.

• video_compress: Lightweight and efficient Flutter library to compress videos, re‑

move audio, manipulate thumbnails, and make videos compatible with all platforms.

http://codemagic.io
https://pub.dev/packages/flutter_svg
https://pub.dev/packages/image_cropper
https://pub.dev/packages/before_after
https://pub.dev/packages/image_picker
https://pub.dev/packages/flutter_blurhash
https://pub.dev/packages/video_player
https://pub.dev/packages/video_trimmer
https://pub.dev/packages/video_compress

42codemagic.io

FLUTTER LIBRARIES WE LOVE Data persistence and file system

DATA PERSISTENCE
AND FILE SYSTEM

It is really frustrating for any user of your app if they have to log

in every time or if a theme switches back to the default every time

they come back to it. To prevent these situations from arising, data

persistence and the ability to interact with the device’s file system

should be an essential part of any app.

Flutter has several libraries to help you with that. Let’s take a look at

a lightweight and performant pure Dart library that proves to be an

excellent solution for the local database.

7/11

http://codemagic.io

43codemagic.io

FLUTTER LIBRARIES WE LOVE Data persistence and file system

Hive

Lightweight and blazing fast key-value database

by HiveDB

Hive is a lightweight yet powerful database that is easy to manage and is very

performant on every platform. It is a pure Dart package with no native dependencies,

so it can even run smoothly on Flutter Web.

“Hive has significantly faster performance than other key–

value databases, it is easy to set up and has cross‑platform

support out of the box. You can also store more complex

data, such as lists and maps, very easily. Hive is lightweight

for simple Flutter projects and can also be used for large/

scalable projects.”

Taha Tesser, Flutter developer & Senior Open Source Sup-

port Engineer at Nevercode

http://codemagic.io
https://pub.dev/publishers/hivedb.dev
https://twitter.com/TahaTesser

44codemagic.io

FLUTTER LIBRARIES WE LOVE Data persistence and file system

Why Hive?
Hive works seamlessly on all platforms, including mobile, web and desktop. Data is

stored in the key-value pair format on the Hive Database. It is strongly encrypted

using AES-256 and has a great performance across all the platforms. You can check

out the benchmark .

Hive supports only regular Dart types out of the box, but behind the scenes it works

with binary data. You can define custom types easily using TypeAdapter with the help

of the hive_generator package.

Developer’s perspective
Unless you absolutely need to deal with a lot of relations in your database, Hive being

a pure Dart library is one of the best options out there. If you are not using a heavy-

weight state management library, it is very tedious to manually rebuild the UI every

time a value changes in the database. In that case, you might appreciate the hive_

flutter package that monitors for changes and renders the widgets accordingly.

Pros and cons

+ Great performance

+ No native dependencies

+ Simple, powerful and intuitive API

+ Strong encryption

+ Support for TypeAdapters

‑ Not ideal if you are using a lot of rela‑

tions in the database

http://codemagic.io
https://pub.dev/packages/hive#benchmark
https://pub.dev/packages/hive_generator
https://pub.dev/packages/hive_flutter
https://pub.dev/packages/hive_flutter

45codemagic.io

FLUTTER LIBRARIES WE LOVE Data persistence and file system

Example
An example showing how to build a simple Color Generator using the Hive database.

Initializing Hive:

Opening a Hive box for storing the key‑value pairs in the database:

void main() async {

 WidgetsFlutterBinding.ensureInitialized();

 // Retrieving the path where to store the Hive database

 final appDocDir = await getApplicationDocumentsDirectory();

 // Initializing Hive

 Hive.init(appDocDir.path);

 // Registering custom adapter

 Hive.registerAdapter(CustomColorAdapter());

 runApp(MyApp());

}

class _HiveViewState extends State<HiveView> {

 @override

 void dispose() {

 // Close all Hive boxes while disposing

 Hive.close();

 super.dispose();

 }

 @override

 Widget build(BuildContext context) {

http://codemagic.io

46codemagic.io

FLUTTER LIBRARIES WE LOVE Data persistence and file system

UI for showing the ListView of colors and the button for generating random colors:

 // Using a FutureBuilder to open a Hive box with

 // the specified name c̀olors̀

 return FutureBuilder(

 future: Hive.openBox(‘colors’),

 builder: (BuildContext context, AsyncSnapshot snapshot) {

 if (snapshot.connectionState == ConnectionState.done) {

 if (snapshot.hasError)

 return Text(snapshot.error.toString());

 else

 return ColorPage();

 } else {

 return CircularProgressIndicator();

 }

 },

);

 }

}

class ColorPage extends StatelessWidget {

 // Defining the Box variable

 final _colorsBox = Hive.box(‘colors’);

 // ...

 @override

 Widget build(BuildContext context) {

 return Column(

 children: <Widget>[

 Expanded(

 // TODO: Show the ListView of colors present

 // in the Box

http://codemagic.io

47codemagic.io

FLUTTER LIBRARIES WE LOVE Data persistence and file system

ValueListenableBuilder is for listening to the changes in the Hive database and

rendering the widgets accordingly.

 child: Container(),

),

 // TODO: Show a button for adding colors to the Box

],

);

 }

}

// For showing the ListView of colors

ValueListenableBuilder(

 valueListenable: _colorsBox.listenable(),

 builder: (context, Box<dynamic> box, _) {

 return ListView.builder(

 itemCount: box.values.length,

 itemBuilder: (BuildContext context, int index) {

 final color = box.getAt(index) as CustomColor;

 return ListTile(

 leading: ClipOval(

 child: Material(

 color: Color(

 int.parse(‘0xFF${color.colorHex.

substring(1)}’)),

 child: SizedBox(

 width: 50,

 height: 50,

),

),

),

 trailing: Row(

 mainAxisSize: MainAxisSize.min,

 children: <Widget>[

http://codemagic.io

48codemagic.io

FLUTTER LIBRARIES WE LOVE Data persistence and file system

Button for adding colors to the Hive database:

 // For Updating the color of that index

 IconButton(

 icon: Icon(Icons.refresh),

 onPressed: () {

 // Function generating random colors

 CustomColor newColor = _generateColor();

 // Replacing color of that position in the

Hive Box

 box.putAt(index, newColor);

 }),

 // For Deleting the color of that index

 IconButton(

 icon: Icon(Icons.delete),

 onPressed: () {

 box.deleteAt(index);

 }),

],

),

 title: Text(color.colorName),

 subtitle: Text(color.colorHex),

);

 },

);

 },

)

ElevatedButton(

 onPressed: () {

 // Function generating random colors

http://codemagic.io

49codemagic.io

FLUTTER LIBRARIES WE LOVE Data persistence and file system

Reference links
Package

Documentation

Sample app

 CustomColor newColor = _generateColor();

 // Adding colors to the Box

 _colorsBox.add(newColor);

 },

 child: text,

)

http://codemagic.io
https://pub.dev/packages/hive
https://docs.hivedb.dev
https://github.com/sbis04/top_flutter_libraries/tree/master/hive_demo

50codemagic.io

FLUTTER LIBRARIES WE LOVE Data persistence and file system

List of data persistence and
file system libraries

• shared_preferences: Flutter plugin for reading and writing simple key‑value

pairs. Wraps NSUserDefaults on iOS and SharedPreferences on Android.

• sqflite: Flutter plugin for SQLite, a self-contained, highly reliable, embedded, SQL

database engine.

• moor: an easy to use, reactive, type-safe persistence library for Dart and Flutter,

built on top of SQLite.

• path_provider: Flutter plugin for getting commonly used locations on the Android

and iOS file systems.

• file_access: Flutter package to handle files on web, desktop and mobile platforms.

• cloud_firestore: Flutter plugin for Cloud Firestore, a cloud-hosted, noSQL data‑

base with live synchronization and offline support on Android and iOS.

http://codemagic.io
https://pub.dev/packages/shared_preferences
https://pub.dev/packages/sqflite
https://pub.dev/packages/moor
https://pub.dev/packages/path_provider
https://pub.dev/packages/file_access
https://pub.dev/packages/cloud_firestore

51codemagic.io

FLUTTER LIBRARIES WE LOVE Animations and transitions

ANIMATIONS AND
TRANSITIONS

Animations always make your app more attractive and help to

enhance the user experience. But overdoing it may also result in a bad

UX. Let’s take a look at some Flutter packages that can help you add

precisely the right amount of animations to your app.

8/11

http://codemagic.io

52codemagic.io

FLUTTER LIBRARIES WE LOVE Animations and transitions

Liquid Swipe

Amazing liquid-like swipe

by Sahdeep Singh

Liquid Swipe is a Flutter package that brings the liquid swipe animation to stacked

Container. It adds an interesting liquid animation when swiping between different

pages. This is inspired by Cuberto’s liquid swipe and IntroViews.

“Liquid Swipe was all about learning. The thing that makes

Liquid Swipe great is its growth, from its initial commit to

last, everything was so challenging but fun. Support and

encouragement from the community is also a wonderful

add-on.”

Sahdeep Singh, creator of Liquid Swipe library

http://codemagic.io
https://pub.dev/publishers/sahdeepsingh.com
https://github.com/Cuberto/liquid-swipe
https://github.com/aagarwal1012/IntroViews-Flutter
https://twitter.com/iamSahdeep

53codemagic.io

FLUTTER LIBRARIES WE LOVE Animations and transitions

Why Liquid Swipe?
Liquid Swipe provides great animation without much boilerplate code. The implemen‑

tation is simple and easy to use with a list of Containers and can be applied to almost

any widget within them.

Developer’s perspective
Liquid Swipe package would be quite useful for anyone who wants to add some

kind of out-of-the-box animation to their app. An animation like this is otherwise

quite complex and time‑consuming to design but this package makes it simple to

implement within a matter of minutes.

Pros and cons

Example

+ Easy to implement

+ Out‑of‑the‑box animation design

+ Can be applied to almost any widget

‑ Only a few customization options

- Lacks in good user documentation

class LiquidSwipeView extends StatelessWidget {

 // List of Containers

 final pages = [

 codemagicPage,

 welcomePage,

];

 @override

 Widget build(BuildContext context) {

 return LiquidSwipe(

 pages: pages,

 fullTransitionValue: 200,

 slideIconWidget: Icon(Icons.arrow_back_ios),

http://codemagic.io

54codemagic.io

FLUTTER LIBRARIES WE LOVE Animations and transitions

Reference links
Package

Documentation

Sample app

 enableLoop: true,

 positionSlideIcon: 0.8,

 waveType: WaveType.liquidReveal,

);

 }

}

http://codemagic.io
https://pub.dev/packages/liquid_swipe
https://pub.dev/documentation/liquid_swipe
https://github.com/sbis04/top_flutter_libraries/tree/master/liquid_swipe_demo

55codemagic.io

FLUTTER LIBRARIES WE LOVE Animations and transitions

List of animation and
transition libraries

• animations: fancy pre‑built animations that can easily be integrated into any

Flutter application.

• curved_navigation_bar: Flutter package for easy implementation of stunning

animated curved navigation bar.

• confetti: Flutter package for blasting colorful confetti over the screen.

• intro_slider: Flutter package for creating a cool intro for your app.

• flip_panel: Flutter package for implementing a flip panel animation.

• flare_flutter: Flutter package giving you full control of your Rive files in the app.

• rive: Rive 2 Flutter runtime package provides functionality for playing back and

interacting with animations built with the Rive editor.

• lottie: Package for rendering Adobe After Effects animations natively on Flutter.

http://codemagic.io
https://pub.dev/packages/animations
https://pub.dev/packages/curved_navigation_bar
https://pub.dev/packages/confetti
https://pub.dev/packages/intro_slider
https://pub.dev/packages/flip_panel
https://pub.dev/packages/flare_flutter
https://rive.app
https://pub.dev/packages/rive
https://pub.dev/packages/lottie

56codemagic.io

FLUTTER LIBRARIES WE LOVE Utility

UTILITY

Some assortments of important Flutter libraries have caught our

attention. These include libraries that will help you debug your app,

get device information, set up authentication, show advertisements

and other essential utilities for enhancing your app’s functionality.

Highlighting a Flutter library that will help you easily add

internationalization and localization support to your apps

with no tedious setup.

9/11

http://codemagic.io

57codemagic.io

FLUTTER LIBRARIES WE LOVE Utility

Easy Localization

Easy and fast internationalization

by Aissat

Easy Localization package simplifies the internationalization and localization

process for Flutter apps. For loading translations, it has support for different formats

like JSON, CSV, YAML, XML. You can also use the Easy Localization Loader package,

which helps to load the translation files quickly.

“The main reasons for choosing the easy_localiza‑

tion package are the ease of adding translations for many

languages and good documentation. There are many

additional benefits, like flexible settings, automatic

detection of the device locale, options for saving the locale

state, pluralization, nested locale keys, RTL locale, etc. All

this saves me a lot of time.”

Alexey Z, one of the contributors of easy_localization

http://codemagic.io
https://pub.dev/packages?q=email%3Amr.aissat%40gmail.com
https://pub.dev/packages/easy_localization_loader
https://twitter.com/AlexeyZd

58codemagic.io

FLUTTER LIBRARIES WE LOVE Utility

Why Easy Localization?
You can use the official flutter_localizations package to internationalize your app

but that requires an elaborate setup to get it working. Using Easy Localization, you

can not only skip this whole setup process but also get a lot of extra functionalities,

which further simplifies the process. It even has a built-in Error widget for missing

translations.

Developer’s perspective
Though English is widely spoken throughout the world, internationalization is a must

if you are releasing your app for a specific region or want to reach a variety of audiences.

Easy Localization package not only helps with localization, but it also has support for

plural, gender, nesting and RTL locales. It supports extension methods on both Text

and BuildContext widgets for easy translation. It is also reactive to locale changes.

Pros
+ Load translations in any format (JSON, CSV, YAML, XML)

+ Supports plural, gender, nesting, RTL locales

+ Extension methods on Text and BuildContext

+ Built‑in Error widget

+ Code generation for localization files

Example
Add the EasyLocalization widget inside the main function:

void main() async {

 WidgetsFlutterBinding.ensureInitialized();

 await EasyLocalization.ensureInitialized();

 runApp(

 EasyLocalization(

 // English, Spanish & Hindi are added as the supported

http://codemagic.io

59codemagic.io

FLUTTER LIBRARIES WE LOVE Utility

Inside MaterialApp define the following properties:

Then you can easily use this text from the translation file (in this case JSON):

languages

 supportedLocales: [Locale(‘en’), Locale(‘es’), Locale(‘hi’)],

 // Path to the localization files (JSON)

 path: ‘assets/translations’,

 fallbackLocale: Locale(‘en’),

 child: MyApp(),

),

);

}

class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 localizationsDelegates: context.localizationDelegates,

 supportedLocales: context.supportedLocales,

 locale: context.locale,

 home: HomePage(),

);

 }

}

// t̀ext̀ is the key having the translated text for

// each language

Text(

 ‘text’,

 textAlign: TextAlign.center,

 style: _style,

).tr()

http://codemagic.io

60codemagic.io

FLUTTER LIBRARIES WE LOVE Utility

To change the locale, you can use the following with the specific language code:

Reference links
Package

Documentation

Sample app

// Changing to Spanish

context.setLocale(Locale(‘es’));

http://codemagic.io
https://pub.dev/packages/easy_localization
https://pub.dev/documentation/easy_localization
https://github.com/sbis04/top_flutter_libraries/tree/master/localization_demo

61codemagic.io

FLUTTER LIBRARIES WE LOVE Utility

List of utility libraries

• device_preview: Flutter package to easily preview your app on different devices.

• fimber: extensible logging for Flutter — based on Timber on Android, using similar

method API with same concepts for tree and planting logging tree.

• flutter_launcher_icons: package that simplifies updating your Flutter app’s

launcher icon.

• intl: Dart package that provides internationalization and localization facilities,

including message translation, plurals and genders, date/number formatting and

parsing, and bidirectional text.

• device_info: Flutter plugin providing detailed information about the device (make,

model, etc.) and the Android or iOS version the app is running on.

• local_auth: Flutter plugin for accessing Android and iOS device authentication

sensors such as Fingerprint Reader, Touch ID and Face ID.

• flutter_local_notifications: plugin for displaying and scheduling local notifi‑

cations in Flutter applications with the ability to customize for each platform.

• google_mobile_ads: Flutter plugin for Google Mobile Ads, supporting banner,

interstitial (full‑screen), rewarded and native ads.

• permission_handler: Flutter plugin that provides a cross-platform (Android and

iOS) API to request permissions and check their status.

• printing: Plugin that allows Flutter apps to generate and print documents to com‑

patible printers on Android, iOS, macOS, Windows, and Linux, as well as web print.

http://codemagic.io
https://pub.dev/packages/device_preview
https://pub.dev/packages/fimber
https://github.com/JakeWharton/timber
https://pub.dev/packages/flutter_launcher_icons
https://pub.dev/packages/intl
https://pub.dev/packages/device_info
https://pub.dev/packages/local_auth
https://pub.dev/packages/flutter_local_notifications
https://pub.dev/packages/google_mobile_ads
https://pub.dev/packages/permission_handler
https://pub.dev/packages/printing

62codemagic.io

FLUTTER LIBRARIES WE LOVE Code generator and build tools

CODE GENERATOR AND
BUILD TOOLS

Code generation uses the Dart Build System builders to generate

boilerplate code. It helps to accelerate the development process,

prevent errors caused by manually written boilerplate

code, and bring apps to production faster. Let’s take a look

at some libraries that use code generation to create boilerplate code

for various functionalities.

There is a native Dart library that helps with the serialization by

auto‑generating the boilerplate code required for

working with JSON in your app.

10/11

http://codemagic.io
https://github.com/dart-lang/build

63codemagic.io

FLUTTER LIBRARIES WE LOVE Code generator and build tools

Json Serializable

Automatically generate code for JSON

by Dart

Json Serializable provides Dart Build System builders to generate code for converting

to and from JSON by annotating Dart classes. To indicate that a class is serializable you

have to annotate it with @JsonSerializable().

“Whenever you need to generate, read and write JSON, you

should use json_serializable. It becomes very powerful

when combined with freezed and is a quick solution

compared to the built_value. When consuming REST APIs

or persisting app state, you really can’t go wrong with this

package.”

Rody Davis Jr, Developer Advocate at Google

http://codemagic.io
https://pub.dev/publishers/dart.dev
https://github.com/dart-lang/build
https://twitter.com/rodydavis?lang=en

64codemagic.io

FLUTTER LIBRARIES WE LOVE Code generator and build tools

Why Json Serializable?
Manual serialization is hard to manage as the project grows larger and may lead to

errors. JSON Serializable library helps you generate code from your model classes. Any

typo in hand‑written boilerplate code can result in an error during runtime. But you

can prevent this by using this library where errors in JSON fields are caught at compile

time.

Developer’s perspective
If you are dealing with any kind of JSON data retrieved from an API, structuring the

data using the model class is very important. But that needs a lot of boilerplate code if

it is a large JSON response. You can prevent a huge chunk of this boilerplate using the

JSON Serializable library. It also provides a number of properties that you can apply

to the classes annotated with @JsonSerializable and @JsonKey. Besides setting argu‑

ments on the associated annotation classes, you can also configure code generation by

setting values in build.yaml.

Pros and cons

+ Generates boilerplate for JSON

+ You can apply properties on

 annotated classes

+ Prevents Runtime errors due to

 invalid JSON field

+ There’s support for build

 configuration

‑ Requires some initial setup

‑ Might produce visual clutter in

 the project navigator

http://codemagic.io

65codemagic.io

FLUTTER LIBRARIES WE LOVE Code generator and build tools

Example
The following is a model class for retrieving applications using Codemagic API:

// application.dart

import ‘package:json_annotation/json_annotation.dart’;

part ‘application.g.dart’;

// An annotation for the code generator to know that this

class

// needs the JSON serialization logic to be generated.

@JsonSerializable()

class Application {

 // To specify that JSON must contain the key,

 // if the key doesn’t exist, an exception is thrown.

 // Also as the key name is different than the

 // variable name, so it is specified

 @JsonKey(required: true, name: ‘_id’)

 final String id;

 final String appName;

 final String? iconUrl;

 final String? lastBuildId;

 Application({

 required this.id,

 required this.appName,

 this.iconUrl,

 this.lastBuildId,

 });

 factory Application.fromJson(Map<String, dynamic> json) =>

 _$ApplicationFromJson(json);

 Map<String, dynamic> toJson() => _$ApplicationToJson(this);

}

http://codemagic.io

66codemagic.io

FLUTTER LIBRARIES WE LOVE Code generator and build tools

The generated code using Json Serializable library:

Reference links
Package

Documentation

Sample app

// application.g.dart

part of ‘application.dart’;

Application _$ApplicationFromJson(Map<String, dynamic> json) {

 $checkKeys(json, requiredKeys: const [‘_id’]);

 return Application(

 id: json[‘_id’] as String,

 appName: json[‘appName’] as String,

 iconUrl: json[‘iconUrl’] as String?,

 lastBuildId: json[‘lastBuildId’] as String?,

);

}

Map<String, dynamic> _$ApplicationToJson(Application instance)

=>

 <String, dynamic>{

 ‘_id’: instance.id,

 ‘appName’: instance.appName,

 ‘iconUrl’: instance.iconUrl,

 ‘lastBuildId’: instance.lastBuildId,

 };

http://codemagic.io
https://pub.dev/packages/json_serializable
https://pub.dev/documentation/json_serializable
https://github.com/sbis04/top_flutter_libraries/tree/master/json_serializable_demo

67codemagic.io

FLUTTER LIBRARIES WE LOVE Code generator and build tools

List of code generator and
build tool libraries

• build_runner: build system for Dart code generation and modular compilation.

• slidy: CLI package manager and template for Flutter, helps to generate modules,

pages, widgets and BLoCs.

• freezed: code generator for immutable classes that has a simple syntax/API

without compromising on the features.

• hive_generator: extension for Hive that automatically generates TypeAdapters to

store any class.

• moor_generator: dev‑dependency to generate the table and data‑classes to‑

gether with the Moor package.

http://codemagic.io
https://pub.dev/packages/build_runner
https://pub.dev/packages/slidy
https://pub.dev/packages/freezed
https://pub.dev/packages/hive_generator
https://pub.dev/packages/hive
https://pub.dev/packages/moor_generator
https://pub.dev/packages/moor

68codemagic.io

FLUTTER LIBRARIES WE LOVE Testing

TESTING

Testing is a must for every app before it gets into production. It helps

to prevent bugs and logical errors, which may otherwise result in an

unsatisfactory experience for the user. Some Flutter libraries that can

make testing easier and faster are listed below.

A testing framework that makes it easy to test classes that depend on

live web services or databases is discussed in detail.

11/11

http://codemagic.io

69codemagic.io

FLUTTER LIBRARIES WE LOVE Testing

Mockito

Mock library for Dart

by Dart

Mockito is a mocking framework written in Dart and inspired by the original Mockito

(available in JAVA). It is useful when it comes to unit testing classes that depend on the

data fetched from live web services or databases.

“Whether you are doing test-driven development or you

just need to test an API, a repository or any class with a

function that returns a value, there is no better tool than

Mockito for Dart developer, period. Despite being more of

a framework than a package, Mockito is simple to use and

makes mocking incredibly easy, allowing you to write clean

and professional tests in a fraction of time.”

Francesco Lapicca, Flutter developer

http://codemagic.io
https://pub.dev/publishers/dart.dev
https://github.com/mockito/mockito
https://twitter.com/yakforward

70codemagic.io

FLUTTER LIBRARIES WE LOVE Testing

Why Mockito?
Unit testing classes that depend on dynamic data, i.e. data that can change at any time,

is quite difficult. Testing this kind of dynamic data with respect to static data defined

in your test class may result in an error. Using the Mockito library, you don’t have

to depend on dynamic data anymore and you can test the logic with fewer errors by

mocking the data.

Developer’s perspective
Mockito helps to emulate a live web service or database and return specific results

depending upon the situation. This allows you to run unit tests faster and reliably. Also,

it is quite easy to test all the possible success and failure scenarios using this library.

Pros
+ Prevents errors caused by dynamic data

+ Helps to test all possible scenarios

+ Allows faster test execution

Example
This example shows how to test an API response from a live web service using

Mockito library.

Generate MockClient class using the Mockito package.

// fetch_app_test.dart

import ‘package:flutter_test/flutter_test.dart’;

import ‘package:mockito/annotations.dart’;

import ‘package:mockito/mockito.dart’;

import ‘package:http/http.dart’ as http;

import ‘package:mockito_demo/constants/constants.dart’;

import ‘package:mockito_demo/models/application.dart’;

http://codemagic.io

71codemagic.io

FLUTTER LIBRARIES WE LOVE Testing

The fetchApplication() function does one of two things:

1. Returns an application if the HTTP call succeeds

2. Throws an exception if the HTTP call fails

Here, we will test these two cases by mocking them.

import ‘package:mockito_demo/secrets.dart’;

import ‘fetch_app_test.mocks.dart’;

// Generate a MockClient using the Mockito package.

// Create new instances of this class in each test.

@GenerateMocks([http.Client])

main() {}

// fetch_app_test.dart

@GenerateMocks([http.Client])

main() {

 group(‘fetchApplication’, () {

 test(‘returns an Application if the HTTP call is

successfully’,

 () async {

 final client = MockClient();

 // Use Mockito to return a successful response when it

 // calls the provided http.Client.

 when(client.get(

 Uri.parse(BASE_URL + ENDPOINT),

 headers: {

 “Content-Type”: “application/json”,

 “x-auth-token”: apiToken,

 },

)).thenAnswer((_) async => http.Response(

http://codemagic.io

72codemagic.io

FLUTTER LIBRARIES WE LOVE Testing

Reference links
Package

Documentation

Sample app

 ‘{“application”:{“_id”: “1”,”appName”:”sign_in_

flutter”,”lastBuildId”:”123”}}’,

 200,

));

 expect(await fetchApps(client), isA<Application>());

 });

 test(‘throws an exception if the HTTP call returns an

error’,

 () {

 final client = MockClient();

 // Use Mockito to return an unsuccessful response when it

 // calls the provided http.Client.

 when(client.get(

 Uri.parse(BASE_URL + ENDPOINT),

 headers: {

 “Content-Type”: “application/json”,

 “x-auth-token”: apiToken,

 },

)).thenAnswer((_) async => http.Response(‘Not Found’,

404));

 expect(fetchApps(client), throwsException);

 });

 });

}

http://codemagic.io
https://pub.dev/packages/mockito
https://pub.dev/documentation/mockito
https://github.com/sbis04/top_flutter_libraries/tree/master/mockito_demo

73codemagic.io

FLUTTER LIBRARIES WE LOVE Testing

List of testing libraries

• bloc_test: testing library that facilitates testing BLoCs, built to work with bloc

and mockito.

• angular_test: test runner and library for AngularDart.

• flutter_gherkin: Gherkin/Cucumber parser and test runner for Dart and Flutter.

• golden_toolkit: Provides APIs and utilities built upon Flutter’s Golden test func‑

tionality to perform UI regression tests.

http://codemagic.io
https://pub.dev/packages/bloc_test
https://pub.dev/packages/bloc
https://pub.dev/packages/mockito
https://pub.dev/packages/angular_test
https://angulardart.dev/
https://pub.dev/packages/flutter_gherkin
https://pub.dev/packages/golden_toolkit

74codemagic.io

FLUTTER LIBRARIES WE LOVE

Conclusion

We hope that each and every one of you has found something useful from this ebook.

As you can see – there are so many great Flutter libraries! And it’s amazing to see

how you – Flutter enthusiasts and developers – are creating even more highly useful

libraries. Big thank you to all of you!

http://codemagic.io

75codemagic.io

FLUTTER LIBRARIES WE LOVE

About the Author

This book was published in cooperation between Codemagic and Souvik Biswas.

Souvik Biswas is a passionate Mobile App Developer (Android, iOS, and

Flutter) with extensive knowledge of UX designs. He has developed

several mobile apps throughout his journey, both freelance and

personal projects. Apart from mobile apps, he has also worked

on platforms like WearOS and VR. As a Technical Writer, he

has published over 30+ Flutter articles on Codemagic Blog and

Medium – Flutter Community, having over 100K+ views. When not

developing apps or writing articles, he is an avid video game player. He is current‑

ly pursuing a B.Tech degree in Computer Science and Engineering from the Indian

Institute of Information Technology, Kalyani.

http://codemagic.io
https://blog.codemagic.io/
https://medium.com/@sbis1999

76codemagic.io

FLUTTER LIBRARIES WE LOVE

About Codemagic

Codemagic is a productivity tool for professional developers. The idea is to help

developers to become more successful and support them with a hassle‑free

continuous integration platform, so they could concentrate on building awesome apps

with shorter time and less errors. Join Codemagic community on Slack.

Codemagic offers continuous integration and continuous delivery for Flutter and

mobile app projects, including React Native, native iOS and native Android projects.

Build, test and deliver mobile apps in record time with Codemagic CI/CD!

codemagic.io

http://codemagic.io
https://join.slack.com/t/codemagicio/shared_invite/enQtNzQyODExMTQyMDcwLTQ2NTJjODE3NTA2Njg3Y2ViYmZiNGE1MWMyYWNjY2I0MzRmM2M2YmZhOTE1YTc5YjNkMmI0MzQzZWU0MzA4OGM
https://codemagic.io/start/
https://twitter.com/codemagicio/
https://www.facebook.com/codemagicio/
https://www.youtube.com/channel/UC6iPpISHwCnNreb53c0eYvg
https://www.instagram.com/codemagicio/
http://codemagic.io

THANK YOU!

by Nevercode

	Introduction
	Editorial note
	State management
	Flutter BLoC
	List of state management libraries

	Networking
	Dio
	List of networking libraries

	Text and fonts
	Animated Text Kit
	List of text and fonts libraries

	UI/UX
	VelocityX
	List of UI/UX libraries

	Location and
connectivity
	Geolocator
	List of location and
connectivity libraries

	Images and videos
	Cached network image
	List of image and video libraries

	Data persistence
and file system
	Hive
	List of data persistence and
file system libraries

	Animations and
transitions
	Liquid Swipe
	List of animation and
transition libraries

	Utility
	Easy Localization
	List of utility libraries

	Code generator and build tools
	Json Serializable
	List of code generator and
build tool libraries

	Testing
	Mockito
	List of testing libraries

	Conclusion
	About the Author
	About Codemagic

